Chapter 14 Study Questions

1. Fill in the following table:

$\left[\mathbf{H}^{+}\right]$	$\left[\mathbf{O H}^{-}\right]$	$\mathbf{p H}$	$\mathbf{p O H}$	acid, base or neutral?
$1.0 \times 10^{-4} \mathrm{M}$				
	$1.0 \times 10^{-7} \mathrm{M}$			
		12.0		
			14.0	
		3.5		
$4.6 \times 10^{-3} \mathrm{M}$				
	$8.2 \times 10^{-12} \mathrm{M}$			

2. For each of the following: classify as acid or base, strong or weak, or amphoteric, and then write a balanced equation for its ionization in water:
a) HNO_{3}
b) HF
c) F^{-}
d) HSO_{3}^{-}
e) KOH
3. Find the pH of the following solutions:
a) 0.010 moles HCl in 10.0 liters water.
b) 6.0 g NaOH dissolved in 15.0 liters water.
c) 5.0 ml 0.40 M HBr diluted to 20.0 liters with water.
d) 0.10 M solution of benzoic acid.
e) 0.20 M NaClO .
f) 0.20 moles HCl plus 0.10 moles KOH dissolved in 1.0 liter water.
4. The pH of a 0.10 M solution of $\mathrm{H}_{2} \mathrm{CO}_{3}$, carbonic acid, is 3.68 .
a) Write an expression for the ionization of the first proton from carbonic acid.
b) Write an expression for K_{a} for carbonic acid.
c) Find the K_{a} of carbonic acid.
d) What is K_{b} for $\mathrm{HCO}_{3}{ }^{-}$?
5. a) Why is the acetate ion, $\mathrm{CH}_{3} \mathrm{COO}^{-}$, a base according to the Bronsted-Lowry model?
b) What is the conjugate acid of $\mathrm{CH}_{3} \mathrm{COO}^{-}$?
c) Write a balanced equation in which $\mathrm{CH}_{3} \mathrm{COO}^{-}$acts as a base.
6. Write a balanced net ionic equation for the reaction between solutions of HNO_{2} and KOH . Which 2 species are acting as acids? as bases?
7. List the following acids in order of increasing strength: $\mathrm{HCl}, \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{HCN}, \mathrm{HF}$. List the following bases in order of increasing strength: $\mathrm{Cl}^{-}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}, \mathrm{CN}^{-}, \mathrm{F}^{-}$.
8. For each of the following solutions, indicate whether it is acidic, basic or neutral:
a) 0.10 M NaOH
b) $0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$
c) 0.10 M KCl
d) 0.10 M NaF

Summary of Chapter 14: Acids and Bases

properties of acids and bases
Bronsted-Lowry model
conjugate acid/base pairs
amphoteric substances
K_{w} : relationship between $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$
definitions of pH and pOH
defining acids and bases in terms of $\mathrm{pH},\left[\mathrm{H}^{+}\right], \mathrm{pOH}$, and $\left[\mathrm{OH}^{-}\right]$
find pH from $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$
strong and weak acids and bases
ionization equations
K_{a} and K_{b}
expressions for K_{a} and K_{b}
relationship to strength of acid or base
relationship between K_{a} and K_{b}
calculation of K_{a} or K_{b} from pH and concentration
calculation of pH from K_{a} or K_{b} and concentration
percent dissociation
acid-base properties of salt solutions

