Honors Chemistry

Chapter 14 Study Questions

$[\mathbf{H}^+]$	[OH ⁻]	pН	рОН	acid, base or neutral?
1.0 x 10 ⁻⁴ M				
	1.0 x 10 ⁻⁷ M			
		12.0		
			14.0	
		3.5		
4.6 x 10 ⁻³ M				
	8.2 x 10 ⁻¹² M			

1. Fill in the following table:

2. For each of the following: classify as acid or base, strong or weak, or amphoteric, and then write a balanced equation for its ionization in water:

a)
$$HNO_3$$
 b) HF c) F^- d) HSO_3^- e) KOH

- 3. Find the pH of the following solutions:
 - a) 0.010 moles HCl in 10.0 liters water.
 - b) 6.0 g NaOH dissolved in 15.0 liters water.
 - c) 5.0 ml 0.40 M HBr diluted to 20.0 liters with water.
 - d) 0.10 M solution of benzoic acid.
 - e) 0.20 M NaClO.
 - f) 0.20 moles HCl plus 0.10 moles KOH dissolved in 1.0 liter water.
- 4. The pH of a 0.10 M solution of H_2CO_3 , carbonic acid, is 3.68.
 - a) Write an expression for the ionization of the first proton from carbonic acid.
 - b) Write an expression for K_a for carbonic acid.
 - c) Find the K_a of carbonic acid.
 - d) What is K_b for HCO₃⁻?
- 5. a) Why is the acetate ion, CH_3COO^- , a base according to the Bronsted-Lowry model?
 - b) What is the conjugate acid of CH_3COO^- ?
 - c) Write a balanced equation in which CH_3COO^- acts as a base.
- 6. Write a balanced *net ionic* equation for the reaction between solutions of HNO₂ and KOH. Which 2 species are acting as acids? as bases?
- 7. List the following acids in order of increasing strength: HCl, HC₂H₃O₂, HCN, HF. List the following bases in order of increasing strength: Cl⁻, C₂H₃O₂⁻, CN⁻, F⁻.
- 8. For each of the following solutions, indicate whether it is acidic, basic or neutral:
 a) 0.10 M NaOH
 b) 0.10 M NH₄NO₃
 c) 0.10 M KCl
 d) 0.10 M NaF

Summary of Chapter 14: Acids and Bases

properties of acids and bases Bronsted-Lowry model conjugate acid/base pairs amphoteric substances K_w : relationship between [H⁺] and [OH⁻] definitions of pH and pOH defining acids and bases in terms of pH, [H⁺], pOH, and [OH⁻] find pH from $[H^+]$ and $[OH^-]$ strong and weak acids and bases ionization equations K_a and K_b expressions for K_a and K_b relationship to strength of acid or base relationship between K_a and K_b calculation of K_a or K_b from pH and concentration calculation of pH from K_a or K_b and concentration percent dissociation acid-base properties of salt solutions